GEOL2021MUGISHA35937 GEOL
Type: Undergraduate
Author(s):
Jesse Mugisha
Environmental Sciences
Advisor(s):
Harvey Omar
Geological Sciences
Location: Zoom Room 1, 03:11 PM
View PresentationThe changing climate as well as the cycling of nutrients and contaminants throughout our planet is heavily influenced by interactions involving plant biomass. For example, interactions of plant biomass with soil biota (specifically fungi)regulates climate and pollution by controlling 1) the quantity of CO2 released from the respiration of organic matter and 2) the movement of pollutants on land and in water. This study focused on 1) investigating fungal colonization of coffee grounds, as a model for understanding the fungi-plant biomass interactions in soils, and 2) studying how fungal colonization changes in the physical and chemical properties of coffee grounds after molding them for 0,3,4,5 and 7 months. The objectives of the next phase of this research will be to examine how the fungi-induced changes in physical and chemical properties of coffee grounds impact 1)carbon sequestering potential (i.e. ease of respiration to CO2) of the coffee grounds and 2) the capacity of the coffee grounds to bind Gentian violet dye (as a model for organic/cationic pollutant).
GEOL2021NEWELL30679 GEOL
Type: Undergraduate
Author(s):
Brooke Newell
Geological Sciences
Advisor(s):
Omar Harvey
Geological Sciences
Location: Zoom Room 4, 02:31 PM
View PresentationSynthetic nanomaterials continue to revolutionize how we do things industrially, medically and domestically. As we continue to utilize these materials, the inevitability of them entering the environment and the need to understand the associated consequences rises to the forefront. My research focuses on understanding the chemo-dynamics of interactions between polyamidoamine (PAMAM)-based nanomaterials (most commonly in the biomedical field through drug and gene delivery) and reactive minerals in the environment. Specifically, this presentation will cover the size-dependent binding (and debinding) dynamics of carboxyl-terminated PAMAMs (G-COOH) onto (and from) ferrihydrite (FFH), a form of naturally-occurring iron oxide mineral. Early results suggest that at pH 5, the smaller G1.5-COOH PAMAM binds to (and debinds from) FFH in higher quantities but at much slower rates that the larger G3.5-COOH PAMAM. The higher quantities of G1.5-COOH PAMAM being bound to (or debound) from FFH is attributable to its smaller size - facilitating access to internal micropore space in FFH that are inaccessible by the larger G3.5-COOH PAMAM. Difference in the accessibility of internal FFH micropore space by the different sized PAMAMs would also explain observed trends in their rates of binding and debinding. In future research, I will be targeting the confirmation of early results and the expansion of my study to include G-COOH PAMAMs larger than G3.5-COOH.
GEOL2021PAREDES51203 GEOL
Type: Undergraduate
Author(s):
Riley Paredes
Biology
Advisor(s):
Omar Harvey
Geological Sciences
Location: Zoom Room 4, 12:46 PM
(Presentation is private)Nitrate contamination of groundwater has been a growing problem in Texas and California from increased food demands, requiring growing agricultural inputs of synthetic fertilizer and manure. Pyrolysis of pistachio agro-waste is a promising method for reducing waste products and engineering biochar with the capacity to support zerovalent iron impregnation (ZVI). This study examined the efficiency of pistachio biochar for nitrate (NO₃-N) removal in water with and without ZVI. Pistachio biochar was functionalized through varied temperature pyrolysis (400-600℃) over three heating durations (0 min, 5 min, 10 min). Biochar samples from both 400°C and 600℃ pyrolysis were tested with and without ZVI impregnation over a 5 day period in a 20 ppm solution of NO₃-N. The biochar-nitrate solutions were recorded in intervals (1 hr, 3 hr, 7 hr, 24 hr, 68 hr, 96 hr, 120 hr) and Ultraviolet-Visible Spectroscopy was utilized to measure NO₃-N absorbance of samples at 400nm. The experimental data show that pistachio biochar with and without ZVI decreased nitrate levels from water; presenting a potential low-cost and sustainable option for repurposing agro-waste for water remediation.
GEOL2020ALLEN25238 GEOL
Type: Graduate
Author(s):
Dalton Allen
Biology
Advisor(s):
Esayas Gebremichael
Geological Sciences
View PresentationHerbicides are chemicals frequently used in agriculture to manage or remove unwanted vegetation (i.e., weeds) that may negatively impact crops through resource competition. Through the elimination of these competitors, losses in crop yield may be reduced thus increasing cropland productivity. Atrazine is an herbicide that is widely used in the United States for the control of weeds that is predominately applied in the agriculture of corn, sorghum, and sugarcane. This is of interest to Illinois agriculture, as according to the United States Department of Agriculture (USDA), Illinois is a major agricultural producer of corn and soybeans with corn accounting for 11 million of Illinois’ 27 million acres of cropland. Further, Illinois possesses an agricultural industry that produces more than $19 billion annually of which corn accounts for more than 50 percent. It is due to the economic importance of corn crops to the state of Illinois and the widespread use of Atrazine in the agriculture of corn, that this project seeks to examine the relationship between Illinois annual corn crop yields and Atrazine application. This relationship will be assessed through analysis of spatial data acquired from the USDA for Illinois Atrazine application and corn crop yield.
GEOL2020KOLLI40047 GEOL
Type: Undergraduate
Author(s):
Navya Kolli
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
View PresentationAnalysis of Deforestation in Nilgiri Biosphere Reserve
This research will focus on Nilgiri Biosphere Reserve, a mountainous region located in the Western Ghats of southern India that encompasses several major national parks. Recent developments have caused mass deforestation in the region for lumber and area for plantations. In addition, more roads are being developed connecting urban centers to Nilgiri, which is only worsening the deforestation issue. In this research, Landsat satellite images will be used to track change over time with regards to deforestation and the development of road networks to see how that impacts wildlife. Geospatial data geoprocessing tools will be used to categorize change in land use over time (the change in some land areas from forest/untouched reserve to agricultural or road). False and true color composites in addition to Normalized Difference Vegetation Index (NDVI) assessments will be undertaken to track the deforestation and differentiate between land types, since vegetation will be in a bright red, soil will be brown, and urban areas will be cyan blue to determine how much live green vegetation there is in the reserve as well.
GEOL2020KOLLI46982 GEOL
Type: Undergraduate
Author(s):
Navya Kolli
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
(Presentation is private)Assessing Land Use Impact on Urban Heat Island Formation in Fort Worth
This research project will focus on assessing the impacts of human activity on the environment in Fort Worth as urbanization has increasingly taken hold over the years. Specifically, the project focuses on analyzing the change in land use in the city over a span of roughly three decades and its contributions to urban heat island formation. Landsat band data products will be used to estimate variations in land surface temperature (LST). LST calculations will highlight the factors contributing to urban heat island formation in Fort Worth.
GEOL2020MUGISHA7301 GEOL
Type: Undergraduate
Author(s):
Jesse Mugisha
Geological Sciences
Advisor(s):
Harvey Omar
Geological Sciences
View PresentationPlant biomass represents an important component within the biogeochemical cycling of nutrients and contaminants. Transformation of this plant biomass in the environment to organic residuals is dictated primarily by interactions with micro-organisms specifically fungi. My research investigates the effects of fungal colonization of spent coffee grounds as a model for plant biomass to organic matter transformation and how this transformation impacts environmental stability and its ability to bind to contaminants. This presentation will cover; 1) physical and chemical changes in the spent coffee grounds after molding for 0,3,4,5 and 7 months, 2) how these physical changes impact the environmental degradability, and 3) how these physical and chemical changes impact the capacity to bind Gentian violet dye (as a model for organic cations).
GEOL2020PRINES56945 GEOL
Type: Graduate
Author(s):
Shaun Prines
Geological Sciences
Walter Manger
Geological Sciences
Xiangyang Xie
Geological Sciences
Advisor(s):
Xiangyang Xie
Geological Sciences
View PresentationThe southern margin of the North American continent transformed from a passive margin to an
active margin during the Ouachita orogeny. Thick and near–continuous Paleozoic successions in
the Ouachita Mountains provide a unique opportunity to document changes in both
sedimentation and tectonics. In contrast to well-documented Taconic, Acadian, and Alleghenian
orogenic events, limited detrital zircon studies of the Ouachita orogeny and associated
successions have been published, and sediment sources of these deep-water, synorogenic clastics
remain less constrained.
In this study, a total of six outcrop samples (n=617) from the Mississippian Stanley Group and
Lower-Middle Pennsylvanian Jackfork and Johns Valley Groups were collected and processed
for U-Pb detrital zircon geochronologic analyses to depict sediment sources and dispersal
patterns during the Ouachita orogeny. Results show that the age distributions of the
Carboniferous deep-water clastic deposits in the Ouachita Mountains are characterized by major
peaks of the Paleozoic (~350-500 Ma), Grenville (~900-1350 Ma), and Midcontinental GraniteRhyolite (~1350-1500 Ma), minor peaks of Yavapai-Mazatzal (~1600-1800 Ma) and Superior (>
~2500 Ma) provinces. These deep water clastics share great similarities with the Appalachian
sources and are likely derived from similar sources. From the Mississippian Stanley Group to the
Pennsylvanian Jackfork and Johns Valley Groups, the Yavapai-Mazatzal population shows
marked enrichment (up to ~12%), suggesting Precambrian basement uplifts, possibly related to
the Ancestral Rockies to the northwest, might be another potential source. Compilation and
comparison show the Neoproterozoic age population (~550-800 Ma), most likely associated with
the peri-Gondwana terrane to the south, ranges from 3% to 35% within the Mississippian Stanley
Group. The variation indicates that the Stanley Group may have strong but short-lived local
contribution from the Gondwana terrane in addition to the regional Appalachian sources.
Overall, despite its proximal location, these Carboniferous deep-water clastic deposits in the
Ouachita Mountains received limited contribution from the Ouachita orogenic belt itself.
GEOL2020TUCKER62356 GEOL
Type: Graduate
Author(s):
Mary Tucker
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Dean Williams
Biology
View PresentationThe new world tropics represent an area of unparalleled biodiversity. Unfortunately, it also represents an area of increasing habitat loss and consequently is in dire need of protection and conservation. The TCU San Ramon Tropical Biology Station located on the Caribbean slope of Costa Rica protects 100 hectares of primary and secondary forest and is a unique and ideal location for studying tropical biology. In the summer of 2018, we mapped an updated trail network at the station using a Bad elf sub-meter GNSS receiver in conjunction with Arc Collector. For this project we analyzed the distance each trail traveled through the 3 habitat types found at the station (primary forest, secondary forest, and pasture land), which will be used to aid the sampling efforts of my Master’s thesis project examining how mixed-species foraging flocks utilize the habitat protected by the station.
GEOL2020WALKER45567 GEOL
Type: Graduate
Author(s):
Samuel Walker
Geological Sciences
John Holbrook
Geological Sciences
Advisor(s):
John Holbrook
Geological Sciences
View PresentationThe Triassic Dockum Group of the western Texas High Plains is studied in depth paleontologically, but until recently lacked a detailed sedimentological evaluation. Recent research of the Dockum Group in Palo Duro Canyon, Texas, provides new interpretations of the complex fluvial lacustrine strata of the comprising formations based on analysis of individual lithofacies. Identified within the lithofacies assemblages are numerous channel belts composed of upper flow regime bedforms. Observed upper flow regime bedforms in outcrop range from upper plane bed, antidunes, breaking antidunes, chutes and pools, and cyclic steps with increasing flow velocity respectively. These channel belts record extreme flow events from repeating massive storms that perpetuated throughout the Texas region of Triassic Pangea. These unique reservoir-quality channels are interpreted to be resultant of a megamonsoonal climate producing massive pulses of rapid flow allowing for the preservation of upper flow regime bedforms. While these channels are identified in outcrop they have not been quantified in distribution, variability in fill, connectivity and formative discharge.
This study aims to test the megamonsoonal hypothesis by quantifying the discharge of these channels and testing if the distribution density and paleodischarge of these channels is consistent with local dominance of megamonsoonal conditions. Upper flow regime structures are rarely preserved in the rock record and extremely difficult to observe directly during natural formation in modern rivers. Most of the equations used to quantify flow conditions for these structures are derived from flume tank experiments. These are applied to the upper flow regime bedforms found in outcrops of the Dockum Group to reconstruct paleohydrology. Current flume tank research reinforces Kennedy’s equations defining relationships between the wavelengths of stable antidune apexes (λ), mean flow depth (hm) and mean flow velocity (U). These equations are modified to account for different upper flow regime structures formed under increasing velocity and discharge identified in outcrop. Bedform distribution, size, and type are variables determined from outcrop measurement. Paleoflow velocities, Froude numbers and relative water depths are determined with an observed margin of error. Scaling relationships and field measurements provide constraints on channel cross sectional area and channel-belt density. This data along with grain size distribution provides tangible numbers for calculating formative discharge. Preliminary results align with data from flume tank experiments and are consistent with major floods produced by substantial storm events verifying the megamonsoonal hypothesis.
GEOL2020WEST44597 GEOL
Type: Graduate
Author(s):
Bryanna West
Geological Sciences
Advisor(s):
Arthur Busbey
Geological Sciences
View Presentation
ENSC2019HUDGENS33438 GEOL
Type: Graduate
Author(s):
andrew hudgens
Geological Sciences
Advisor(s):
Tami Morgan
Geological Sciences
Location: Session: 2; Basement; Table Number: 2
View PresentationMonarch butterfly populations in North America have declined by approximately 80% over the last 20 years. Many contributing factors are responsible for this decline, however the loss of Milkweed has been identified as a major factor. Milkweed is the primary food source for Monarch caterpillars. A GIS analysis was performed to identify milkweed resources in the North Texas area.
GEOL2019CAVES50910 GEOL
Type: Graduate
Author(s):
Lindsay Caves
Geological Sciences
Advisor(s):
Rhiannon Mayne
Geological Sciences
Location: Session: 1; 1st Floor; Table Number: 5
(Presentation is private)Mesosiderites are meteorites composed of equal parts metal and crustal silicate material, which have been linked to the HED parent body 4Vesta. The metal portion of mesosiderites is also compositionally similar to the IIIAB irons. Mesosiderite silicates were mixed with metal, recrystallized and rapidly cooled. The slow metallographic cooling rates recorded by mesosiderite metal indicate mixing followed by deep burial within an asteroidal body. Several models for the formation of mesosiderites have been proposed, but no single model can completely explain their multi-stage history. Oxygen isotope compositions of mesosiderites and eucrites are identical, consistent with the HEDs and mesosiderites originating from a common parent body. However, there are notable differences between the two groups. These include the differing Fe-Mn-Mg systematics in mesosiderite pyroxenes, which reflect an FeO reduction trend and not the magmatic trend seen in the HEDs. Phosphates and tridymite are also more abundant in mesosiderites than howardites and eucrites. These differences have been attributed to redox reactions that occurred during the metal-silicate mixing stage of mesosiderite formation. As previous work focused mainly on the silicate portion, this study examines the metal of five mesosiderite samples of varying petrologic class and degree of metamorphism. Thick sections of each meteorite containing both matrix metal and metal nodules were requested on loan from the National Meteorite Collection, located in the National Museum of Natural History, Department of Mineral Sciences. Electron microprobe (EMP) analyses of both silicate and metal portions of each mesosiderite were collected, as well as LA-ICP-MS analyses of the matrix metal and metal nodules within each section. The dataset will be analyzed for evidence of redox reactions and other processes that may have been occurring during the metal-silicate mixing phase of mesosiderite formation. If redox reactions occurred between the metal and silicate portions of mesosiderites, then: 1) the matrix metal within mesosiderites may be depleted in readily oxidizable elements (e.g. P, W) relative to the metal nodules that are not in contact with the silicate phase; or, 2) all metal in mesosiderites is depleted in readily oxidizable elements. This depletion should be visible when compared to IIIAB irons of a similar composition.
GEOL2019DEBONE30636 GEOL
Type: Graduate
Author(s):
Kristin DeBone
Geological Sciences
Tamie Morgan
Geological Sciences
Advisor(s):
Richard Hanson
Geological Sciences
Location: Session: 2; Basement; Table Number: 8
(Presentation is private)Recent field work has discovered a volcanic complex within the Paleocene Black Peaks Formation in the northwestern part of Big Bend National Park in west Texas. This is the only known Paleocene volcano in west Texas. We have identified pyroclastic deposits consisting of ash-sized and coarser clasts, including volcanic bombs and blocks, which were erupted explosively from a nearby vent. Margins of the volcanic complex have been mapped using remote sensing because the volcanic rocks are distinctly different in color from the adjacent shale. Characteristics of the pyroclastics suggest derivation from phreatomagmatic eruptions, which occurred when magma and groundwater violently interacted in the shallow subsurface.
GEOL2019DONAHOO65357 GEOL
Type: Graduate
Author(s):
Michaela Donahoo
Geological Sciences
Advisor(s):
Omar Harvey
Geological Sciences
Location: Session: 2; 3rd Floor; Table Number: 7
View PresentationUsing Non-Invasive Geophysical Techniques in Near-Surface Infrastructure Planning and Management
Michaela Donahoo1, Karim Ouamer-ali2,3, Youcef Daoud2, Kaddour Djili3, Omar R. Harvey1
1Department of Geological Sciences, Texas Christian University, Fort Worth, Texas, USA.
2 National Institute of Agronomic Research of Algeria (INRAA), El-Harrach, Algeria.
3Ecole Nationale Supérieure Agronomique (ENSA), El-Harrach, Algeria.Understanding soil characteristic variability geospatially as a function of depth and time is key to the optimal implementation of subsurface infrastructure planning and expansion. The soils physical behavior as well as its interaction with piping and road materials determine where such a system could divert and predict future maintenance frequency. Central to the development of site-specific, precision management strategies is the quantification and mapping of the geospatial variability in soil properties at significantly higher resolutions than provided in current soil surveys. The presentation will cover results from ongoing collaborative research efforts between researchers at Texas Christian University and two Algerian institutions in using non-invasive measurements of bulk apparent electrical conductivity (ECa) to quantify and map 3-D soil variability in semi-arid and arid areas of Algeria, Northern Africa. The focus will be on the derivation and application of depth-specific ECa-ECe (saturated paste), ECa-clay content and ECa-water content relationships for use in understanding seasonal salinity and water dynamics within potential depths of construction interest.
GEOL2019LAMB52985 GEOL
Type: Graduate
Author(s):
Grayson Lamb
Geological Sciences
Advisor(s):
John Holbrook
Geological Sciences
Location: Session: 1; 3rd Floor; Table Number: 9
(Presentation is private)The fundamental understanding of any geologic basin stems from ascertaining the relationship between its source and sink. Every basin is therefore identified as a “sink” and has a provisional “source.” The investigation of this fundamental relationship is the preliminary exploration step to further basin development.
The Late Triassic Dockum Group of the west Texas high plains is an understudied group that begs investigation into the source to sink relationship. A comprehensive study of the Dockum Group as a “sink” is here undertaken in order to better understand the paleoclimate and its implications on the Dockum group depositional style. This study focuses on the northern most section of the Dockum group outcrop system. Within the study area it is subdivided into three main formations, the Tecovas mud, Trujillo sand, and Cooper Canyon sand-mud mix system.
This study showcases a forward stratigraphic modeling software, Dionisos Flow. From field based outcrop work: grain size, channel thickness, water discharge, and lithofacies assemblages were quantified as model inputs in Dionisos Flow.
The study aims to model Dockum Group sedimentation in order to determine the plausible paleoclimate, and its related depositional environment and depositional style. To do so, an outcrop study and fluvial architecture analysis was completed to serve as model input variables. Then a forward stratigraphic Dionisos Flow model of the three main Dockum Group formations was generated. It was then analyzed and coupled with the outcrop study to draw conclusions on the necessary Triassic climate conditions to produce the Dockum Group deposits.
Per the modeling exercise and outcrop study it is concluded that the Triassic climate was highly variable, shifting between semi-arid to humid. Its variability has been underemphasized in previous studies. Climate alterations are on a scale of 103 years. Additionally, the Dockum Group’s sedimentation style has been a forum of contradicting theories. This study has concluded that Dockum sands were deposited in a predominantly upper flow regime environment during humid climate cycles, while its abundant muds were deposited in lower flow during semi arid climate cycles.
GEOL2019MIRKIN10373 GEOL
Type: Graduate
Author(s):
Stephen Mirkin
Biology
Advisor(s):
Tamie Morgan
Geological Sciences
Location: Session: 2; Basement; Table Number: 1
View PresentationTexas horned lizards are a threatened species in the state of Texas with declines attributed to a variety of factors including: habitat conversion, pesticide use and red imported fire ants. These cryptic lizards in their natural habitats utilize a variety of anti-predator defense mechanisms. The primary defensive adaptation to avoid predators is often cited as their cryptic coloration, which is often suggested to color match the background substrates of the regions where they are found. Although background color-matching is purported to be an important factor in horned lizard defensive strategies it has never been empirically tested. Here we present the first known study of background color matching of Texas horned lizards in the state of Texas. We used a GIS analysis using soils and satellite imagery data to test how well Texas horned lizards match the soils and substrate in different regions of Texas.
GEOL2019PEREZ40118 GEOL
Type: Undergraduate
Author(s):
Dylan Perez
Geological Sciences
Advisor(s):
Tamie Morgan
Geological Sciences
Location: Session: 2; 3rd Floor; Table Number: 1
View PresentationOver the last 20 years significant growth has occurred in the northern part of Fort Worth, Texas defined by the zip codes 76131, 76137, 76177, and 76244. Using GIS analysis, this project measured the amount of open area lost and the growth of residential and commercial areas.
GEOL2019STIEFFEL51148 GEOL
Type: Graduate
Author(s):
Rodney Stieffel
Geological Sciences
Advisor(s):
John Holbrook
Geological Sciences
Location: Session: 1; 2nd Floor; Table Number: 4
View PresentationThe highstand deltas of the Holocene tend to each initiate with the peaking of eustatic sea level rise at about 7000 y.b.p. While generally tied to this time, the initiation of highstand shorelines is not necessarily synchronous. Local impacts on relative sea level can impact this timing. In particular, the Parana Delta, Argentina, appears to have initiated as early as 8100 y.b.p., well before the global sea level peak and potentially before any comparable highstand shorelines. The Parana Delta encompasses an area of ~17,400 km2 enclosed in the Rio de la Plata estuary, growing steadily at a rate of approximately 2 km2 yr-1 for roughly the past 6000 yrs. This deltaic system has shifted from fluvial, to wave-dominated, and then back to its present day fluvial dominated system. Aerial and satellite imagery, shallow boreholes, radiometric dating of shells and sand, and Ground Penetrating Radar are used to define the distinctive sedimentary features of the delta. New data from the upper part of the delta indicates the Parana Delta initiated well before the 6000 y.b.p. previously reported. Sediment cores collected from across the upper delta are used to identify sedimentary facies and construct a stratigraphic framework. Three OSL samples collected from the oldest set of beach ridge s indicate the first ridges formed approximately 8100 years ago. These beach ridges are <3 m above sea level and argue for an early peak in relative sea level. Highstand strata are about 6 m thick above a thin (1-2 m) condensed section above transgressive shoreface deposits. The Parana delta initiated at least 1500 years before the sea level peak. Assumptions of synchronicity of highstands with eustatic sea level accordingly must be tempered with comparable allowance for local error.
GEOL2019TALBERT42796 GEOL
Type: Graduate
Author(s):
Brendan Talbert
Geological Sciences
Advisor(s):
Cheyenne Xie
Geological Sciences
Location: Session: 2; Basement; Table Number: 11
View PresentationThe Palo Duro Basin is a northwest-southeast trending cratonic basin in the Texas Panhandle that formed from uplift of the Amarillo/Wichita Mountains during the Pennsylvanian, and subsequent subsidence during the Permian. Sediments were deposited in a number of environments, the most prominent being fan-delta, carbonate shelf, and deep basin settings. Major lithologies in the Pennsylvanian are granite wash, shelf-margin carbonates, and basinal shales, while the Permian hosts the same lithologies, as well as numerous evaporites and red-bed sequences.
This study analyzes log data from 100+ wells in the Palo Duro Basin to correlate and determine the lateral extent of different facies throughout the basin during the Pennsylvanian and Permian. Cross-sections made will help to generate isopach, structure, and other geological maps to identify areas where further geochemical and/or petrophysical analyses can be performed to evaluate Pennsylvanian and lower Permian shale gas potential of the Palo Duro Basin. This project will establish a more detailed stratigraphic framework of Pennsylvanian and lower Permian aged sediments of the basin, as well as determine source rock quality and thermal maturity for potential shale gas plays within the Palo Duro Basin, with a more thorough look along the southern fringes of the basin near the Matador Arch.
GEOL2019TERRELL64068 GEOL
Type: Graduate
Author(s):
Aro Terrell
Geological Sciences
Advisor(s):
Richard Denne
Geological Sciences
Location: Session: 1; 2nd Floor; Table Number: 7
(Presentation is private)The primary objective of this study is to test my hypothesis that the stratigraphy within Little Hoss Ranch is very complex and diverse but correlative to the surrounding strata of similar depth and characteristics. The second objective is to identify characteristics of the stratigraphic facies to better aid in the production via recompletion or other determined methods within the Little Hoss area. Seismic data that will be analyzed within Little Hoss Ranch are made available by TEP Barnett. Seismic analysis will be done using Kingdom and will be assisted by the TEP geophysicist when possible. The goal is to use these data to better identify faults and other significant structural features within the area as well as the Barnett Shale stratigraphy for LHR. A map will be made using the seismic data and logs will be included in the map for reference and quality check purposes. The seismic, well log, and cutting data for the LHR that will be analyzed was originally acquired by Chesapeake as early as 2008 and is now owned by TEP, Barnett. 127 well logs will be analyzed using PETRA, within and immediately adjacent to the Little Hoss Ranch area, to better correlate and map the stratigraphy within the Little Hoss Ranch and will be tied to the LHR wells with surrounding wells in Johnson County and Tarrant County to create regional cross-sections. An additional cross-section will be created with the wells to the north in Tarrant County to display structural trends and stratigraphic facies correlation. The 127 LHR wells will be used to create a detailed structure map that can be compared to the seismic time structure map. The BHT will be used from the well logs as well as production data (oil to gas ratio) to determine if differential thermal maturity occurred within the area The overall goal of this project is to analyze the stratigraphy and structure of the Barnett Shale play within the Little Hoss Ranch confines and to identify any geologic effects or geologic solutions to marginal production for the area of study. Seismic data, well-logs, core and cuttings, mud-log descriptions, and background literature research will be used to conduct a thorough investigation into the stratigraphy affecting the LHR. The wells in the LHR will be used with wells in northern parts of the Fort Worth Basin to create a cross section spanning a larger area. This will help to better correlate the stratigraphy for the basin and help identify depositional and erosional changes in the Fort Worth Basin. Additionally, the OGIP data and calculations will be used to help define what the remaining hydrocarbon value is for the Barnett Shale within LHR.
GEOL2019TOTZ51136 GEOL
Type: Undergraduate
Author(s):
Samuel Totz
Geological Sciences
Advisor(s):
Tamie Morgan
Geological Sciences
Helge Alsleben
Geological Sciences
Location: Session: 1; 2nd Floor; Table Number: 6
(Presentation is private)The World Stress Map (WSM) is a global compilation of information on the stress field of the present-day earth crust and is maintained since 2009 at the Helmholtz Center Potsdam GFZ German Research Center for Geosciences. This database uses data from earthquake focal mechanisms, well bore breakouts, drilling induced fractures, and geologic data to generate a map of the stresses in the Earth. Using GIS, the data was mapped and examined for the Permian Basin area of West Texas which is currently one of the largest and most active oil fields in the United States. This database in conjunction with data collected on the direction of horizontal well bores was examined to determine if or how stress directions in the Earth influenced the drilling bore direction. This data was also used to see if there is a correlation between stress direction and a company’s decision to place a well in a certain location or orientation.
GEOL2018ALVAREZ29418 GEOL
Type: Graduate
Author(s):
John Alvarez
Geological Sciences
Advisor(s):
Helge Alsleben
Geological Sciences
View PresentationAlthough multiple localized chemostratigraphic and strength studies have been completed on the organic-rich Barnett Shale in the Fort Worth basin (Montgomery et al., 2005; Pollastro et al., 2007; Jarvie et al., 2007; Rowe et al., 2008; Williams et al., 2016; Taylor, 2017; Alsleben, unpublished), basin-wide correlations have not been completed. Basin-wide correlation of chemostratigraphy and mechanical stratigraphy could enhance the understanding of regional variations in chemical composition and rock competence. Therefore, this study is going to test multiple hypotheses to identify regional trends and correlations within the Barnett Shale, based on variations in the formations chemical makeup and rock strength. The purpose is to start establishing a more comprehensive, basin-wide characterization of the mechanical stratigraphy and chemostratigraphic framework of the Barnett Shale in the Fort Worth Basin. Results will start to establish possible regional variations such as rock strength and help determine what controls those variations. Ultimately, the data compilation may provide a better understanding of the Barnett Shale and start to address the complex interactions between marine sediment flux, terrestrial sediment flux, and geochemistry throughout the basin at the time of deposition.
GEOL2018BURNS41328 GEOL
Type: Undergraduate
Author(s):
Alec Burns
Geological Sciences
Advisor(s):
Richard Denne
Geological Sciences
View PresentationThe geomechanical properties of Eagle Ford cores from the San Marcos Arch were measured by hardness tools to test that calcareous rocks are stiffer than the clay-rich shales. Results were quantified and graphed to reinforce the idea that the Maness shale could be more ductile than the superimposing Eagle Ford Shale.
GEOL2018BURNS56887 GEOL
Type: Undergraduate
Author(s):
Alec Burns
Geological Sciences
Advisor(s):
Xiangyang Xie
Geological Sciences
Tamie Morgan
Geological Sciences
View PresentationLithology and facies of the Lower Williams Fork in the Piceance Basin, Colorado were interpreted using spectral gamma ray logs on Petrel. Models were created using this correlated data to predict the facies in an area with no well data. Different modeling methods will be used, such as object modeling and sequence indication simulation to compare and search for the best fit. Published outcrop measurements were used to constrain subsurface geobody geometry. Models were also used to estimate reservoir rock potential in the Lower Williams Fork.