Filter and Sort







GEOL2017GOMEZ40480 GEOL

PROVENANCE OF CENOZOIC CLASTIC SEDIMENTS IN THE TACHIRA SADDLE, WESTERN VENEZUELA, AND IMPLICATIONS OF SEDIMENT DISPERSAL PATTERNS IN THE NORTHERN ANDES

Type: Graduate
Author(s): Ali Ricardo Gomez Geological Sciences
Advisor(s): Xiangyang Xie Geological Sciences

Northwestern South America is highly deformed due to the transpressive boundary with complex interactions among the Caribbean plate, the South American plate, the Nazca plate and the Panama arc. Previous studies suggest that the Cenozoic uplifting of the Mérida Andes and Eastern Cordillera of Colombia affected sediment dispersal patterns in the region, shifting from a Paleocene foreland basin configuration with an axial major fluvial system, to the modern configuration of isolated basins with distinctive sediment dispersal patterns. Well-exposed Cretaceous to Pliocene strata in the Táchira saddle between the Easter Cordillera and Merida Andes provide a unique opportunity to test proposed sediment dispersal patterns in the region. U-Pb detrital zircon geochronology and supplementary XRD heavy mineral identification were used together to document provenance of Cretaceous to Pliocene clastic rocks collected from the area of La Alquitrana. Results from the U-Pb detrital zircon geochronology show that there are six age groups recorded in this samples. Two groups related with Precambrian Guyana shield Terranes and Putumayo basement in the Eastern Cordillera, and four groups related to different magmatic episodes during the Andean Orogenic process. Three major paleogeography changes were also recorded in these detrital signatures, including a transition between the Cretaceous passive margin and the Paleocene foreland basin, the initial uplifting of the Eastern Cordillera with the isolation the Llanos Basin and Táchira Saddle from the Central Cordillera and the Magdalena Valley in the Early Oligocene, and the uplifting of the Mérida Andes by the Early Miocene. The outcomes of this study emphasize the importance of the Mérida Andes and Eastern Cordillera Uplift in controlling the evolution of the sediment dispersal patterns in northern South America and represent a contribution in the understanding of the paleogeographic evolution in the region.

View Presentation

GEOL2017HOWE26318 GEOL

The Architecture and Connective Potential of Blowout Wings in Fluvio-Deltaic Environments

Type: Graduate
Author(s): Tyler Howe Geological Sciences
Advisor(s): John Holbrook Geological Sciences

Fluvio-lacustrine systems are prone to experiencing significant flood events separated by longer low energy periods. During low flow, sediment is stored upstream of the lake as mid-channel and side-attached bars. During high-discharge events, water level rises above the topographically low delta front levees, the turbulent jet of the river is positioned upstream of the levee terminus where levees are less confining, and the previously stored sediment is flushed from the channel into the lake basin laterally as sheets. This process forms a laterally extensive, well sorted wedge shaped deposit of fine grained sand called a blowout wing (after Tomanka, 2013). These wings are documented in the ancient within the Kayenta Formation, UT, where the sand wings demonstrated a significant increase in connectivity between statistically clustered fluvio-lacustrine channel belts. In this research, we document two examples of blowout wings forming in the modern. The first example is a lake sourced by a mud dominated river (Denton Creek, Lake Grapevine, TX), and the second is a lake sourced by a sandy, bedload dominated river (Red River, Lake Texoma, TX). Wings are composed of fine to medium grained, well sorted, and clean sand. The deposits are thin and laterally continuous, with measured thicknesses of 5-10 cm that thin away from channel axis. Wings have an aerial extent up several hundred meters, scaling to 4-6 times the channel width. The Red River at Lake Texoma has a channel width of 125m and deposits wings with an aerial extent of 250-350m long along the levee of the delta channel and 300-500m laterally. As the Red River has prograded into the basin, 5-6 individual blowout wings form a wing complex 1500m long and 500-600m laterally from the channel. Denton Creek at Lake Grapevine has a channel width of 25m and deposits wings on the order of 50-125m along the levee of the delta channel and 60-150m laterally. Three wings at Lake Grapevine form a wing complex 300m long and 100-150m laterally. The amalgamation and statistical clustering of fluvio-deltaic channel belts is increased by the presence of blowout wings, resulting in higher total reservoir size and connectivity. Blowout wings should be, and are, found in modern systems and subsequently the rock record recording fluvio-lacustrine environments of deposition.

View Presentation

GEOL2017MCGREGOR60725 GEOL

Humid terminal splays as sand-sheet reservoirs: A first look at the modern, Andean foreland, and a new look at the ancient, Raton Basin

Type: Graduate
Author(s): Graham McGregor Geological Sciences
Advisor(s): John Holbrook Geological Sciences

Thin sand sheets presumed to be terminal splay bodies have potential to serve as hydrocarbon reservoirs. The few studies of terminal splays managed from arid systems has provided insight, but ground study of the humid equivalent is lacking. Deposited in the distal zone of a distributary fluvial system (DFS), the splay bodies are formed as rivers terminate from loss of slope into unconfined dispersive flow and deposit bed load as splays and advect mud to more distal floodplains. The splay sheets and floodplain together provide potential for both reservoir and seal. We examined terminal splay deposits in a modern humid terminal splay system, Andean foreland of northern Argentina, and in ancient foreland deposits, Paleocene Raton Formation of the Colorado Raton Basin. I am going to compare the two locations in terms of grain-size, sedimentary structures, geometry, and scale and see how they relate. I hypothesize that the two are going to have similar grain sizes, and that the sedimentary structures and geometries will also be analogous but expect them to be scaled down in the Raton Basin.
The modern splay in Argentina is nearly 1.3 km wide and 1.9 km long and was deposited during a single large flood in 2012. Cross sections generated by hand augers show a maximum thickness of 0.8 m, an average of 0.5 m, and a consistently very fine-grained to lower medium-grained sand texture throughout. Total sand deposited in the flood event is ~ 1.2 million cubic meters (~2.0 million cubic meter maximum), and accumulates over earlier splay deposits separated by weakly developed soils that are locally removed by splay incision. Subsequent dissection of the splay permits examination of sedimentary structures, which are dominantly climbing ripples, planar laminations, and cross sets, but climbing antidunes are locally found near the splay apex. Ancient terminal splays of the Raton Formation are made of thinner sand sheets (~0.25 m) and tend to have thicker muddy floodplain deposits between. Grain-size distribution, sheet geometry, and sedimentary structures however are consistent between the modern and ancient examples. Both the Argentina and Raton examples reflect the distal end of a humid Distributive Fluvial System, however, the Raton system appears to have been of smaller scale. This is consistent with the comparatively smaller scale of the Raton vs. Andean tectonic system.

View Presentation

GEOL2017MCGUIRE35162 GEOL

U-Pb Detrital Zircon Signature of the Ouachita Orogenic Belt

Type: Graduate
Author(s): Preston McGuire Geological Sciences
Advisor(s): Xaingyang Xie Geological Sciences

The Late Paleozoic Ouachita fold-and-thrust belt extends from the southern terminus of the Appalachian thrust belt in eastern Mississippi up through central Arkansas, southeastern Oklahoma, and Texas terminating in northeastern Mexico. A series of Carboniferous foreland basins were formed sequentially to the thrust front. The interaction between the Laurentian craton and the Appalachian-Ouachita orogenic belts controlled sedimentation in the southern midcontinent region throughout the Paleozoic. In contrast to the Appalachian orogenic belt to the east, the Ouachita orogenic belt and associated sediments remain poorly documented and less constrained.
In this study, seven Ordovician to Mississippian aged clastic units from the Ouachita Mountain in central Arkansas were sampled and tested using U-Pb detrital zircon geochronology. Three major age peaks are prominent, including the Grenville Province (~0.95-1.2 Ga), the Granite-Rhyolite Province (~1.3-1.5 Ga), and the Superior Province (>~2.5 Ga) in Ordovician to Silurian aged rocks. A change in this signature becomes clear at the beginning of the Carboniferous from Early Mississippian Stanley Group samples showing the additional Paleozoic age peak (~490-520 Ma) potentially derived from the Appalachian orogenic belt to the east, and/or from peri-Gondwanan terranes accreted to Laurentia just before the collision with Gondwana. This stratigraphic variation of detrital zircon age signature suggests that the transition from a passive to an active margin in the Ouachita trough started, at the latest, in early Mississippian times. Results of this study is the first systematic study of the U-Pb detrital zircon signature of the Ouachita orogenic belt and have important implications in sediment dispersal, provenance interpretations, and paleogeography reconstructions in North America, especially in the southern mid-continent and surrounding areas.

View Presentation

GEOL2017WALKER20025 GEOL

Geochemistry of the Albian Kiamichi Formation of East Texas

Type: Undergraduate
Author(s): Jessica Walker Geological Sciences
Advisor(s): Richard Denne Geological Sciences

This study involved the examination of core samples from the Lower Cretaceous aged Kiamichi Formation of the East Texas Basin in order to interpret its organic and elemental geochemistry using various techniques. The Kiamichi Formation may have the potential to be a source rock for hydrocarbons, and may be a plausible target for oil and gas companies to produce using unconventional techniques. Since this formation has yet to be thoroughly analyzed, this project has lead to further understanding of its potential by using techniques such as handheld x-ray fluorescence tool to estimate for the abundance of rare earth elements and trace metals, as well as a CHNS analyzer to determine the amount of organic carbon of the formation. Upon completion of the sample analysis, this geochemical information about the Kiamichi Formation provides beneficial information for further research on the overall Kiamichi Seaway.

View Presentation

GEOL2017WILLIAMS23742 GEOL

FRACTURE ANALYSIS AND MAPPING OF THE CRETACEOUS BOQUILLAS FORMATION, BLACK GAP WILDLIFE MANANGEMENT AREA, BREWSTER COUNTY, TX

Type: Graduate
Author(s): John Williams Geological Sciences
Advisor(s): Helge Alsleben Geological Sciences

The Eagle Ford Shale in south Texas is one of the most prolific unconventional hydrocarbon plays in the world (Breyer, 2016). In 2015, natural gas and oil from this field hit peak production numbers at 5,539 MMcf (million cubic feet) and 1,118,648 Bbl (barrels) per day, respectively (Texas RRC, 2016).  In order for this low-permeability formation to produce, companies are using hydraulic fracturing, a stimulation treatment used in low-permeability rock whereby fluids are pumped at high pressures into reservoirs, causing new fractures to form and possibly reactivating existing fractures (Schlumberger, 2016).  The aim of this study is to identify any geomechanical and geochemical properties that optimize fracture connectivity within the Boquillas Formation, the West Texas Eagle Ford equivalent.  Energy-dispersive x-ray fluorescence (ED-XRF) and strength/hardness data from this study suggests that fracture frequency and length are affected by the clay and calcium carbonate content, and, by inference, the strength of the rock.

View Presentation